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The duration of transient fronts in a bistable reaction-diffusion equation in a bounded domain is considered.
The speed of the front decreases exponentially with the length of the domain, and the duration increases
exponentially with the domain length. The duration of the fronts generated from random initial conditions is
distributed in a power-law form up to a cutoff time. The cutoff time then increases exponentially with the
domain length so that the power-law distribution dominates for large domains. Further, external noise of
intermediate strength increases the mean duration of the fronts. The increases in the duration with the domain
length become almost linear, however, in the presence of asymmetry in the cubic nonlinearity.
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I. INTRODUCTION

Traveling fronts in reaction-diffusion systems have been
of wide interest in various fields: e.g., combustion, chemical
reaction, cell biology, nerve spike propagation, ecological
systems, and population dynamics �1–6�. Studies on travel-
ing fronts in reaction-diffusion equations originated from
Luther �1906�, Fisher �1937�, and Kolmogoroff, Petrovsky,
and Piscounoff �1937� �see �4��, in which a scalar
monostable equation with quadratic nonlinearity in a one-
dimensional domain was dealt with. Then, various systems
including bistable, multivariable, discrete, and two- or three-
dimensional systems have been studied and the existence and
stability of traveling front solutions have been proven �6�.
Further, various properties of front solutions have been
shown even in simple scalar reaction-diffusion equations in a
one-dimensional space: e.g., pinning of fronts with inhomo-
geneity �7,8�, noise-induced front propagation �9,10�, propa-
gation failure in discrete systems �11�, fronts of algebraically
decaying form �12�, finite-time extinction of fronts �13�, and
sharp transitions between extinction and propagation of
fronts �14�.

Of interest is the movement and interaction of fronts or
kinks in bistable reaction-diffusion equations with cubic non-
linearity. It is known that the speeds of the fronts are ex-
tremely small and decrease exponentially with the distance
to the boundaries or the distance between the fronts in a
one-dimensional domain ��15–17� and references in �18��.
These slowly evolving states are referred to dynamical meta-
stability or metastable dynamics �18�. The fronts are tran-
sient and annihilate through collisions to the boundaries or
with each other, but their duration increases exponentially
with the length of the domain. Further, the number, density,
and distance of the fronts decrease only logarithmically in
time when fronts are randomly distributed initially in the
domain �19,20�. That is, the transient time from an initial
state to one of the stable states increases exponentially with
the size of the domains.

Such exponential dependences of transient time on system
size have attracted much attention in the field of dissipative

nonlinear systems. The dependences have been found in
transient spatiotemporal chaos in coupled map lattices �21�
and reaction-diffusion equations �22�, the length and number
of cycles in transient states in asymmetric neural networks
�23�, transient irregular firings in diluted inhibitory networks
of pulse-coupled neurons �24�, transient well-controlled se-
quences in continuous-time Hopfield networks with Li-
apunov functions �25�, and transient oscillations in unidirec-
tionally coupled ring neural networks �26,27�. These systems
never reach their stable states in a practical time when the
system size is sufficiently large. The transient states thus play
more important roles than the asymptotic states in actual
systems: e.g., information processing in the nervous systems.

In this paper, the duration of transient fronts in a scalar
bistable reaction-diffusion equation in a bounded domain is
studied. In Sec. II, the model equation and a kinematic de-
scription of the movement of the fronts are shown. Properties
of the duration of the transient fronts are then derived and
compared with the results of computer simulation in Sec. III.
It is then shown that the duration of the fronts generated
from random initial conditions is distributed in a power-law
form up to a cutoff time, which increases exponentially with
the length of a domain. Further, effects of external noise on
the transient time are examined in Sec. IV and it is shown
that the duration of the fronts increases in the presence of
noise of intermediate strength. Effects of asymmetry in the
cubic nonlinearity are also considered in Sec. V and it is
shown that shifts in one of the stable states degrade the ex-
ponential increases in the duration of the fronts with the do-
main length so that the increases become almost linear. The
conclusion and a discussion are given in Sec. VI. In the
Appendix, an intuitive derivation of the kinematics for the
movement of the fronts is noted.

II. MODEL EQUATION AND FRONT KINEMATICS

We consider the following initial-boundary value problem
of a scalar reaction-diffusion equation in a one-dimensional
bounded domain:

�u/�t = �2u/�x2 + f�u�, − l/2 � x � l/2 �l � 0� ,

f�u� = − �u − u1��u − u2��u − u3� ,*horikawa@eng.kagawa-u.ac.jp
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u1 = − 1, u2 = 0, u3 = 1,

u�x,0� = ��x�, �u�− l/2,t�/�x = �u�l/2,t�/�x = 0. �1�

The values u1=0 and 0�u2�1 have been often used, but we
use this form for later analysis. There are three spatially ho-
mogeneous solutions: u�x , t�=u1, u3, which are stable, and u2
unstable. This bistable model is referred to as the heterozy-
gote inferiority class in the field of population genetics �1�.
The equation is called the time-dependent Ginzburg-Landau
equation �28� and the Schlögl model �9� in the field of phase
transitions. Propagating fronts with this cubic kinetics were
first studied by Semenov et al. in 1939, which is noted in �5�.
There is a stable traveling front u�z� in an infinite domain
−��x���4�, which connects the two stable states u1 and u3
as

u�x,t� = u�z�, z = x − ct, u�− �� = u1, u��� = u3,

u�z� = �u3 + Ku1 exp��u1 − u3�z/�2��/�1 + K exp��u1 − u3�

�z/�2�� = tanh�z/�2� �K = 1� ,

c = �u1 − 2u2 + u3�/�2 = 0, �2�

where K is an arbitrary constant and is set to 1 so that u�0�
=0. For the values of ui in Eq. �1�, the speed c is zero and the
front is stationary.

In a bounded domain −l /2�x� l /2 in Eq. �1�, the fol-
lowing stationary standing front solution exists, but is un-
stable:

u�− l/2,t� = − m, u�0,t� = 0, u�l/2,t� = m �0 � m � 1� ,

m =�2 −
1

1 − 8 exp�− l/�2�
� 1 − � , �3�

� = 4 exp	− l
�2


, l � 1.

The derivation of the values m at the boundaries is given in
the Appendix. The solution u�x , t� of Eq. �1� then converges
to one of the steady states u1 and u3. However, it has been
shown that the instability of the stationary fronts weakens
exponentially with the domain length l through the eigen-
value problem �16�. This results in the exponentially slow
movement of the fronts. Let one front be located at x= l /2
− l+, and let l+ be the length of the right domain in which u
	0 and then l− l+ be the length of the left domain in which
u�0—i.e., u�0 for −l /2�x� l /2− l+, u=0 at x= l /2− l+,
and u�0 for l /2− l+�x� l /2. The movement of the front is
expressed by �15–17�

dl+/dt � k�exp�− 
�l − l+�� − exp�− 
l+�� ,

k = 24/�2 � 17.0, 
 = 2�2 � 2.83. �4�

When the length l+ is smaller than l /2—i.e., the front is
located at x�0—the sign of the right-hand side of Eq. �4� is
negative so that l+ becomes zero and the front moves toward

the right boundary x= l /2 and vice versa. However, the speed
of the front is proportional to the difference between the
inverses of the exponentials of the two lengths
(exp�−l+�−exp�−�l− l+��), not the inverse of the exponential
of the difference between the lengths
(exp�−l+�−exp�−�l− l+��). Then the speed decreases expo-
nentially with the total length of the domain even though the
difference between the two lengths is fixed.

This extremely slow movement of the fronts and their
long duration are easily seen with computer simulation. Here
Eq. �1� was discretized with �x=0.2 and �t=0.01, and the
length l of the domain was set to 10. The explicit finite-
difference method was used for numerical integration. The
initial value ��x� at each x was drawn from Gaussian white
noise with the mean 0 and standard deviation 0.1. It was
confirmed that finer space and time steps give about the same
results. Figure 1 shows an example of the time course of
u�x , t�, in which snapshots of u at intervals of t=100 are
plotted. An irregular line around u=0 corresponds to the ran-
dom initial values ��x�, and a front is formed in a short time.
The almost black region corresponds to the slow movement
of the front, and it takes about t=15 500 for u to converge to
u1.

III. DURATION OF TRANSIENT FRONTS

Exponential increases in the duration of the transient
fronts with the domain length have been proven in a general
form in �16�, in which the upper and lower bounds of the
duration were given carefully considering the accuracy of the
equations of the front positions. We here derive properties of
the duration of the fronts in Eq. �1� by directly using Eq. �4�
in the same way as �27�.

A. Duration of rectangular fronts

Equation �4� with the initial value l+�0�= l0 is solved by
substituting y=exp�
l+� as

dy/dt = 
k�exp�− 
l�y2 − 1�, y�0� = exp�
l0�, l+�0� = l0,

�5�

exp�− 
l+�t�� = exp�
l/2�tanh„− exp�− 
l/2�
kt

+ arctanh�exp�
�l0 − l/2���… , �6�

where k and 
 are the same as in Eq. �4�. We assume l0
� l /2 without any restriction. The solution l+�t� explodes to
minus infinity in a finite time at which the augment of the
hyperbolic tangent becomes zero. The duration T of the tran-
sient fronts is given by setting l+�T�=0 as

FIG. 1. Time course of u�x , t� under a random initial condition.
Plotted are snapshots of u at intervals of t=100.
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T =
exp�
l/2�


k
„arctanh�exp�
�l0 − l/2���

− arctanh�exp�− 
l/2��… . �7�

The duration T increases exponentially with the domain
length l. Further, it increases exponentially as the initial
length l0 when l is large since arctanh�x��x for small x. A
simpler form of the duration T�l0� for large l is derived by
letting l be infinity in Eq. �4�. The equation and the solution
become

dl+/dt = − k exp�− 
l+� ,

l+�t� =
ln�exp�
l0� − 
kt�



,

T =
exp�
l0� − 1


k
, l+�0� = l0 l+�T� = 0 �0 � l0 � l/2� .

�8�

This shows the exponential increases in the duration T with
the initial length l0. Further, the length decreases in propor-
tion to time in the beginnings—i.e., l0− l+�t��k exp�−
l0�t
for texp�
l0� / �
k�, and the decrease rate decreases expo-
nentially with the initial length.

To confirm this, a computer simulation was done with Eq.
�1� under the initial conditions

��x� = − 1 �− l/2 � x � l/2 − l0� = 1 �l/2 − l0 � x � l/2� ,

�9�

where l=15. That is, the initial pattern ��x� is a rectangular
front with the lengths l0 and l− l0, and it quickly becomes a
traveling front. Then l0 is considered to be the initial value of
l+ �l+�0�= l0�. The transient time T of u to u1�=−1� was mea-
sured with the condition �u�x ,T�−u1��0.1 for −l /2�x

� l /2. Figure 2 shows the duration T against the initial
length l0 �0.2� l0�7.4�, in which the simulation results
�solid circles�, Eq. �7� �solid line� and Eq. �8� �dashed line�,
are plotted. Equations �7� and �8� hardly differ, and they
agree with the simulation results except for small l0 ��2.0�.

B. Distribution of duration under random initial
conditions

When the initial values ��x� are given randomly indepen-
dently of x, the initial length l0 of the smaller domain of the
generated front is considered to be distributed uniformly in
0� l0� l /2. Then the probability density function h�T� of the
duration T of the transient fronts �the convergence time of u
to u1 or u3� is derived with

�
0

l0

U�0,l/2�dl0� = �
0

T

h�T��dT�, �10�

where U�a ,b� is the uniform distribution between a and b.
Hence we obtain

h�T� =
1

�dT�l0;l�/dl0�
2

l
= dl0�T;l�

dT
2

l
= d�ln„tanh�exp�− 
l/2�
kT + arctanh�exp�− 
l/2���…/
�

dT
2

l

= 4k exp�− 
l/2�cosech„2�exp�− 
l/2�
kT + arctanh�exp�− 
l/2���…/l . �11�

There is a cutoff point Tc=exp�
l /2� / �
k� at which the form
of h�T� changes. On the one hand, for T�Tc or when the
domain length l is large, the approximate form is derived by
using arctanh�x��x and sinh�x��x for x1:

h�T� �
k


kT + 1

2

l
„0 � T � �exp�
l/2� − 1�/�
k�… .

�12�

This is also derived from Eq. �8�, in which l is set to be
infinity. The probability density function is approximated by
a power-law distribution. On the other hand, for T�Tc or

when l is small, the probability density function is approxi-
mated by the exponential distribution by using sinh�x�
�exp�x� /2 �x�1� for large T in Eq. �11�:

h�T� � � exp�− �T�, � � 2
k exp�− 
l/2� �T 	 0� .

�13�

The cutoff point increases exponentially with the domain
length and the region in which the duration is distributed in
the power-law form extends. The proportion of the duration
over the cutoff is evaluated as Prob�T�Tc�

-5

0

5

10

0 2 4 6 8
l 0

lo
g1
0
(T
)

simulation

Eq. (7)

Eq. (8)

FIG. 2. Duration T of the transient front vs initial length l0 of the
right domain �0.2� l0�7.4� in a domain of length l=15. Simulation
results �solid circles�, Eq. �7� �solid line�, and Eq. �8� �dashed line�.
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�21/2exp�−2� / l�0.19 / l, which decreases in proportion to
the inverse of the domain length.

Figure 3 shows the probability density function h of the
duration T of the transient fronts in the domain of length l
=15. Plotted is a normalized histogram of the duration of
10 000 transient fronts obtained with computer simulation of
Eq. �1� �solid circles�. The initial values ��x� are given by
random numbers with the Gaussian function of mean 0 and
standard deviation 0.1. The histogram of the simulation re-
sults is composition of those made per decade. The slope of
the log-log graph of the histogram is close to −1, and the
density decreases with the inverse of T up about to the cutoff
point Tc�3.4�107 obtained with Eq. �11�. Equation �11�
�solid line�, Eq. �12� �dashed line�, and Eq. �13� �dotted line�
are also plotted. Equation �11� agrees with the simulation
results for the whole region, while Eq. �12� agrees with them
for T�Tc.

The mean m, the variance �2, and the coefficient of varia-
tion CV of the duration T are calculated with h�T�. Using
Eqs. �8� and �12� for large l, they are expressed as

m„T�l�… = 2�exp�
l/2� − 
l/2 − 1�/�
2kl� ,

�2
„T�l�… = �exp�
l� − 4 exp�
l/2� + 
l + 3�/�
3k2l�

− �m„T�l�…�2,

CV„T�l�… = �„T�l�…/m„T�l�… � �
l/2 �l � 1� . �14�

Thus the mean and standerd deviction ��� increase exponen-
tially with 
l and the relative variation �CV� increases as
2−1/4l1/2. Figure 4 shows a semilogarithmic plot of the mean
m against the domain length l, in which the simulation re-
sults of 10 000 runs for each l �solid circles�, the numerical
calculations with h�T� in Eq. �11� �solid line� and Eq. �14�

�dashed line�, are plotted. Equations �11� and �14� agree with
the simulation results, although they are slightly large.

C. Transient time in two-dimensional domains

Dependences of the transient time on the domain size in
two-dimensional domains are considered. A computer simu-
lation in a rectangular domain under random initial condi-
tions and the Neumann boundary condition was done. Figure
5 shows a normalized histogram h of the transient time T of
u�x ,y , t� of 10 000 runs obtained with the simulation in a
two-dimensional square domain −l /2�x� l /2, −l /2�y
� l /2 �l=10� �solid circles�. The initial condition u�x ,y ,0� is
drawn from the Gaussian distribution N�0,0.12�. The prob-
ability density functions obtained in a one-dimensional do-
main of length l=10 are also plotted: Eq. �11� �solid line�,

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8
log10(T )

lo
g1
0
(h
(T
)) simulation

Eq. (11)

Eq. (12)

Eq. (13)

FIG. 3. Probability density function h of duration T of transient
fronts in a domain of length l=15. Plotted are a normalized histo-
gram of the duration of 10 000 transient fronts obtained with com-
puter simulation of Eq. �1� under the Gaussian random initial con-
dition ��x��N�0,0.12� �solid circles�, Eq. �11� �solid line�, Eq. �12�
�dashed line�, and Eq. �13� �dotted line�.
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l
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g1
0
(m
(T
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simulation

Eq. (11)

Eq. (14)

FIG. 4. Mean duration m of transient fronts vs domain length l.
Simulation results �solid circles�, numerical calculation with h�T� in
Eq. �11� �solid line� and Eq. �14� �dashed line�.

-10
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0
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log10(T )
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0
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(T
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Eq. (11)

Eq. (12)

Eq. (13)

FIG. 5. Normalized histogram h of the transient time T of
u�x ,y , t� in a two-dimensional domain −l /2�x� l /2, −l /2�y
� l /2 �l=10� obtained with computer simulation under Gaussian
random initial condition N�0,0.12� �solid circles�. Equation �11�
�solid line�, Eq. �12� �dashed line�, and Eq. �13� �dotted line� are
also plotted for l=10.
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Eq. �12� �dashed line�, and Eq. �13� �dotted line�. Here the
value of the cutoff point is Tc�2.9�104, and Eq. �11�
agrees with the simulation results. Figure 6 shows the mean
of 10 000 transient times obtained with the simulation for
5� l�12 �solid circles�. The mean transient time calculated
with Eqs. �11� and �14� is also plotted with solid and dashed
lines, respectively, and they agree with the simulation results.
The expressions for one-dimensional domains of length l
agree with the simulation results in two-dimensional squares
of the same length l of their sides. The exponential increases
in the transient time are intrinsically one-dimensional effects,
and the transient time depends on not the area, but the length
of the domain.

IV. EFFECTS OF EXTERNAL NOISE

It is known that external spatiotemporal noise and varia-
tions in parameter values cause deviation and fluctuations in
the speeds of the fronts in bistable reaction-diffusion equa-
tions �7–10�. Then the duration of the transient fronts varies
in the presence of noise. Effects of additive white noise on
the duration are considered with the following stochastic dif-
ferential equation for the first equation in Eq. �1�:

�u/�t = �2u/�x2 + f�u� + �xn�x,t�, − l/2 � u � l/2 �l � 0� ,

E�n�x,t�� = 0, E�n�x,t�n�x�,t��� = ��x − x����t − t�� ,

�15�

where n�x , t� is spatiotemporal Gaussian white noise and �x
is the strength of the noise. The noise �xn�x , t� gives random
fluctuations in the speed of the front. The movement of the
front is approximated by adding a noise term to the kine-
matic equation �4� as

dl+/dt = k�exp�− 
�l − l+�� − exp�− 
l+�� + �ln�t� ,

�l
2 � �

−l/2

l/2

��xdu/dz�2dz�	�
−l/2

l/2

�du/dz�2dz
2

� �x
2��

−l/2

l/2

�du/dz�2dz

� �x
2��

−�

�

�sech2�z/�2�/�2�2dz

= �9/8�x
2,

E�n�t�� = 0, E�n�t�n�t��� = ��t − t�� , �16�

where n�t� is Gaussian white noise in time. The strength �l
��1.03�x� of the noise in Eq. �16� takes about the same
value as �x in Eq. �15� for this simple additive noise �9�. The
duration T of the transient fronts is evaluated with the first
passage time �FPT� of l+ from l0 to 0 or l �l+�0�= l0, and
l+�T�=0 or l� in the same way as �31�.

We can consider the FPT from l0 to 0 by letting l+� l /2
and adding a reflecting boundary at l+= l /2 owing to the
symmetry instead of both absorbing boundaries at l+=0 and
l. The mean m(T�l0�) and variance �2(T�l0�) of the FPT are
then given by �32�

m�T;0�l0� = 2	�
0

l0

����d��
�

l/2

��l
2�����−1d�
 ,

�2�T� = 4	�
0

l0

����d��
�

l/2

m�T;0�l0�/��l
2�����−1d�


− m�T;0�l0�2,

��y� = exp	− �y 2a���
�l

2 d�
 , �17�

a�y� = k�exp�− 
�l − y�� − exp�− 
y�� .

When the domain length is large, the FPT problem of simpler
form is given by letting a�l� be −k exp�−
l+� in Eq. �17�.
Figure 7 shows the mean m(T�l0�) of the duration of the
transient fronts when l=10 and l0=4. The mean of 1000 runs
of computer simulation with Eqs. �1� and �15� under the
initial condition, Eq. �9�, of rectangular fronts are plotted
with solid circles. The mean duration increases at the inter-
mediate noise strength, and the fluctuations caused by the
intermediate noise tend to increase the FPT. In the simple
Ornstein-Uhlenbeck process, the deterministic term is linear
and the noise always decreases the FPT. The increases in the
duration of the transient fronts are due to the nonlinear ex-
ponential terms in Eq. �4�. That is, the ratio of the increase
T�l++�l�−T�l+� due to a small positive fluctuation �l in l+ to
the decrease T�l+�−T�l+−�l� due to a negative fluctuation
−�l is always larger than 1—i.e., dT /dl+�0 and d2T /dl+

2

�0. Thus the fluctuations caused by the noise of small
strength tend to increase the FPT. As the noise strength in-
creases, the effects of the diffusion become dominant and the
FPT decreases to the order of l2. The FPT obtained by nu-
merically integrating Eq. �17� is plotted with a solid line, and

0

1

2

3

4

5

0 5 10 15
l

lo
g1
0
(m
(T
))

Simulation

Eq. (11)

Eq. (14)

FIG. 6. Mean of 10 000 transient times obtained with computer
simulation in a two dimensional domain −l /2�x, y� l /2 for 5
� l�12 �solid circles�, mean transient time calculated with Eq. �11�
�solid line� and Eq. �14� �dashed line�.
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it agrees with the simulation results �solid circles�. The FPT
calculated with the equation a�l�=−k exp�−
l+� hardly dif-
fers from them �data not shown�. Note that the decreases in
the FPT at small noise strength ��x�0.002� may be an arti-
fact due to the instability of the numerical integral since they
do not appear in the simulation.

The peak of the mean duration moves toward the region
of large noise strength, and the value decreases as the initial
length l0 decreases and vice versa. Numerical integrals of Eq.
�17� for l0=3.0 and 3.5 are also plotted with dashed and
dotted lines, respectively, in Fig. 7. When l0= l /2, the stand-
ing fronts remain stationary in the absence of noise and the
duration of the fronts is considered to decrease monotoni-
cally as the noise strength increases. Under random initial
conditions for u, the mean duration of the fronts is approxi-
mated by the mean of T�l0� over 0� l0� l. The duration for
the initial length l0 close to l /2 mainly contributes to it, and
it can be shown with computer simulation and numerical
integrals with Eq. �17� that the mean duration monotonically
decreases with the noise strength.

V. EFFECTS OF ASYMMETRY IN THE CUBIC
NONLINEARITY

When the cubic function f is not symmetric—i.e., �u1�
� �u3� or u3−u2�u2−u1—unstable stationary front solutions
never exist. There is a stable traveling front in an infinite
domain with nonzero speed c given by Eq. �2�. Intuitively,
when u1=−1 and u3=1−�, the speed is approximated by c
�−2−1/2� and this constant speed bounds the duration of the
fronts to �l /c��21/2l /� in a domain of length l.

An expression for the movement of the transient fronts for
u3=1−� is derived in the same way as the Appendix as
follows:

dl+/dt � c0 + k�exp�− 
��l − l+�� − exp�− 
l+�� + o��2� ,

c0 � �/�2 − 3�2/�2�2� � �/�2, �18�


� = 
�1 − �� � 
 ��  1� .

We here put c0=2−1/2� and 
�=
 for small ��� for simplicity.
There are the following critical length lc and shift �c, below
which the front moves right and the length l+ of the right
domain of the front decreases to zero and over which the
front moves left and l+ increases to l:

lc = ln�2/�c0/k + ��c0/k�2 + 4 exp�− 
l���/
 ,

�c = �2k�exp�− 
l+� − exp�− 
�l − l+��� . �19�

The duration of the fronts with the initial length l+�0�= l0 is
obtained as

T1 = ln�A�0�/A�l0��/�k
��c0/k�2 + 4 exp�− 
l��

�l0 � lc, l+�T1� = 0� ,

T2 = ln�A�l�/A�l0��/�k
��c0/k�2 + 4 exp�− 
l��

�l0 � lc, l+�T2� = l� ,

A�l�� =
exp�− 
l�� − �c0/k + ��c0/k�2 + 4 exp�− 
l���

exp�− 
l�� − �c0/k − ��c0/k�2 + 4 exp�− 
l���
.

�20�

Simpler forms of them are given by letting l be infinity in Eq.
�18� as

dl+/dt � c0 − k exp�− 
l+� ,

lc = ln�k/c0�/
 = ln��2k/��/
, �c = �2k exp�− 
l+� ,

T1 = ln��1 − c0/k�/�1 − c0/k exp�
l0���/�
c0�

�l0 � lc, l+�T1� = 0� ,

T2 = ln��c0/k exp�
l� − 1�/�c0/k exp�
l0� − 1��/�
c0�

�l0 � lc, l+�T2� = l� . �21�

For a fixed small shift 0��1 in u3, the duration T1 in-
creases exponentially with l0 when l0� lc and becomes infin-
ity at l0= lc. Then T2 decreases almost linearly with l0 when
l0� lc:

T1 � �exp�
l0� − 1�/�
k� �0 � l0 � lc�

→� �l0 → l� ,

T2 � �l − l0�/c0 = �2�l − l0�/� �lc � l0 � l − lc�

��exp�
�l − l0�� − 1�/�
k� �l − lc � l0 � l� . �22�

For a fixed initial length l0, the duration T1 increases mono-
tonically with � and becomes infinity at �=�c. Then T2 de-
creases in proportion to the inverse of �. Figure 8 shows the
duration T of the transient fronts against the initial length l0

0
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3000

0 0.02 0.04 0.06 0.08 0.1
σｘ

m
(T
) simulation

FPT

l0=3.0

l0=3.5

FIG. 7. Mean duration m of transient fronts with initial length l0

of right domain vs standard deviation SD �x of external noise �l
=10, l0=4�. Simulation results �solid circles�, FPT with numerical
integration of Eq. �17� �solid line�. FPT with Eq. �17� for l0=3.0
and 3.5 is also plotted with dashed and dotted lines, respectively.
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of the right domain �0� l0� l=15�, in which the simulation
results �symbols� and Eq. �20� �lines� are plotted for �
=10−1, 10−3, and 10−5 �for �=0; see Fig. 2�. The duration
increases exponentially with l0 up only to TL��k /c0
−1� / �
k��21/2 / �
�� in the side regions 0� l0� lc and l
− lc� l0� l. The increase in the duration is almost linear in
the middle region lc� l0� l− lc and is up to TH�21/2�l
−2lc� /�. The width of the region about l0= lc in which the
duration increases over TH is exponentially small.

Under random initial conditions for u�x ,0�=��x�, the ini-
tial lengths l0 of the right domain of the generated fronts are
regarded to be distributed uniformly in �0, l�. The probability
density function of the duration of the transient fronts is then
given by h�T�= �1 / �dT1 /dl0�+1 / �dT2 /dl0�� / l. Using Eq. �22�,
it is approximated as

h�T� � 1/T �T � TL � �k/c0 − 1�/�
k� � �2/�
���

�
1

TH − TL

l − 2lc

l
� �/��2l� �TL � T � TH�

� exp�− �T� „T � TH � �2�l − 2lc�/�

= �2�l − �2 ln��2k/�� − 1�/
�/�… . �23�

The duration is uniformly distributed around l /� in the re-
gion TL�T�TH of width O�l /��. The mean duration in-
creases in proportion about to the total domain length l as
m�T���TL+TH� /2�2−1/2l /� since the probability density
over TL decreases exponentially. The exponential increases
in the duration of the fronts with the domain length are then
degraded in the presence of the asymmetry.

VI. CONCLUSION AND DISCUSSION

The properties of the duration of the transient fronts in the
bistable scalar reaction-diffusion equation in a bounded do-

main were derived with the kinematic equation for the front
movement. The duration of the transient front exponentially
increases with the smaller length of the two sides of it since
the speed is proportional to the difference between the in-
verses of the exponentials of the two lengths �15–18�. The
mean duration of the fronts generated from random initial
conditions—i.e., the transient time of the system—also in-
creases exponentially with the length of the whole domain.
The probability density function of the duration of the fronts
is then approximated by the power-law distribution below
the cutoff time and by the exponential distribution over it.
The cutoff time increases exponentially with the domain
length, and the power-law distribution dominates when the
domain length is large enough. The exponential increases in
the transient time with the width of the domains were also
shown in two-dimensional domains with a computer simula-
tion. Further, external noise tends to increase the duration of
the transient fronts owing to the nonlinear interaction of ex-
ponential forms. Then the duration changes nonmonotoni-
cally as the strength of the noise increases. The increases in
the duration become almost linear with the domain length,
however, when the cubic nonlinearity is asymmetric so that
small drift exists.

The kinematic equation can be applied to a circular do-
main u�0, t�=u�l� , t� or a periodic boundary condition
u�x , t�=u�x+ l� , t� with l�=2l. It is also applicable to transient
standing pulses under the Dirichlet boundary condition
u�0, t�=u�l� , t�=m with the same sign and traveling pulses in
a circular domain in the presence of convection ���u /�x�. It
is also noted that the values of the variables and parameters
are scaled as follows when the diffusion coefficient is �2 and
the function f is multiplied by b2 in Eqs. �1�:

u�z� = tanh��b/��21/2z�, � = 4 exp�− �b/��l/21/2� ,

k = 24 � 2−1/2�b, 
 = 2 � 21/2�b/��, �l
2 = �9/8�1/2�b/���x

2.

�24�

The parameter � corresponds to the characteristic width of
the fronts and domain length is scaled with it �15–18�.

When the domain length is larger, it can be shown with
computer simulation that many fronts are generated under
random initial conditions and the fronts annihilate each other
through collisions. The probability density function of dis-
tances between randomly distributed fronts in large
domains—e.g., l=1000 in Eq. �1�—has been obtained in
�19,20�. It was then shown that the mean interval increases
logarithmically in time through the collisions and merging of
the fronts. This agrees with the exponential increases in the
duration of the fronts with the domain length shown in this
study. The forms of the solutions one step before converging
to u1 or u3 are one front or one pulse �two fronts�. The
duration of them is dominant in the whole transient time to
the steady states since it is exponentially larger than the col-
lision times of the previous fronts. The transient time is then
approximated by the duration of the finally generated front.

Further, it is known that spatial inhomogeneity can pre-
vent fronts from moving, called pinning �7,8,10�. The stand-
ing fronts are then stabilized depending on the spatial varia-

-2
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0 5 10 15l 0

lo
g1
0
(T
)

δ=0.1 δ=0.1 (Eq. (20))
δ=0.001 δ=0.001 (Eq. (20))
δ=0.00001 δ=0.00001 Eq. (20))

FIG. 8. Duration T of the transient front vs initial length l0 �0
� l0� l=15� in the presence of asymmetry with u3=1−� in f�u�.
Simulation results �symbols� and Eq. �20� �lines� are plotted for �
=10−1, 10−3, and 10−5.
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tions. When spatial Gaussian white noise with strength �u is
added to f�u�, the variances �c

2 of the speed of the front due
to the spatial variations is approximated by �9 /8�1/2�u

2 in the
same way as Eq. �16� �9�. By using Eq. �8�, it is derived that
the spatial variations can localize the fronts of length l larger
than 6�8 /9�1/4 /�u and exponential increases in the duration T
appear only up about to �9 /8�1/4 / �2�21/2�u�.

Recently, a similar mechanism of the occurrence of the
exponentially slow convergence was found in transient oscil-
lations in unidirectionally coupled ring neural networks �27�.
In the ring neural networks, each neuron is bistable and there
are two stable steady states in which the states of the all
neurons take the same values. However, when initial states
are given randomly, the neurons are separated in two blocks;
the states of the neurons are positive in one block and nega-
tive in the other block. There are inconsistencies in the signs
at the boundaries between the neuron blocks, and they propa-
gate in the direction of the coupling so that the network
oscillates. The speeds of the boundaries depend on the num-
bers of neurons in the two blocks and are described with a
kinematic equation similar to Eq. �4�. Then the convergence
time of the network to one of the steady states becomes
exponentially long as the number of neurons in the network
increases.

Mathematically, in both bistable systems, there are un-
stable solutions: the unstable standing fronts and unstable
periodic oscillations, which correspond to the separatrixes of
the two stable steady states. However, they are only one-
dimensionally unstable and the systems can reach the stable
steady states only through the one-dimensional movement of
the fronts and boundaries. Further, their instability becomes
exponentially small as the system size increases; the eigen-
value of the unstable eigenspace of the stationary solution,
Eq. �3�, decreases to zero exponentially with the domain
length �16�, and the largest eigenvalue of the Poincaré map
of the unstable oscillations decreases to unity double expo-
nentially with the number of neurons �26,27�. This leads to
the exponentially slow one-dimensional movement in each
system.

Phenomenologically, the speeds of the fronts depend on
the values at the boundaries of the domain and can be de-
rived with them as shown in the Appendix. The equation of
the movement of the boundaries in the ring neural networks
was also derived directly through the values of the states of
the neurons at the boundaries between the blocks. The con-
vergence to the steady states is intrinsically linear, and their
relaxation is exponential. The degrees to which the states
approach the steady states are exponentially small with the
system size. The speeds of the fronts and boundaries depend
on the differences between the relaxation processes to the
two steady states, and then the symmetry of the bistability is
necessary for the exponential increases in the transient time
with system size.

APPENDIX: INTUITIVE DERIVATION
OF THE KINEMATICS FOR TRAVELING FRONTS

1. Unstable stationary fronts

Consider the following boundary condition in addition to
Eq. �1�:

u�− l/2,t� = m−, u�l/2,t� = m+ �− 1 � m− � 0 � m+ � 1� .

�A1�

Solutions of Eqs. �1� and �A1� connect m− and m+, and then
a front solution increasing monotonically with respect to x
from −l /2 to l /2 can exist. When the values of u at the
boundaries are the same �m+=−m−=m�, a stationary front
solution of Eqs. �1� and �A1� is derived from the following
corresponding ordinary differential equation according to
�2,3�

d2u/dx2 + f�u� = 0,

du�− l/2,t�/dx = du�l/2,t�/dx = 0,

u�− l/2,t� = − m, u�l/2,t� = m �0 � m � 1� . �A2�

This can be expressed as follows unless du /dx�0:

1

2

d

dx
	du

dx

2

+ f�u�
du

dx
= 0,

	du

dx

2

+ 2F�u� = 2F�m�, F�u� = �
0

u

f���d� =
u2

2
−

u4

4
,

du

dx
= � �2F�m� − 2F�u� . �A3�

The integration constant in the right-hand side in the second
equation comes from the boundary conditions in Eq. �A2�.
The simplest form of the solutions is a monotonically in-
creasing function with respect to x and then

�
−m

u d�

�F�− m� − F���
= �2	x +

l

2

 . �A4�

The value m of u at the boundaries depends on the length l of
the domain. A formula for m with l is given by letting u
=m in the limit of the integral and x= l /2. Since F�u� is an
even function, we obtain

l = �2�
0

m d�

�Fm − F���
, Fm = F�− m� =

m2

2
−

m4

4
,

=�2�
0

m 2d�

���2 − �2���2 − �2�
,

�2 = 1 − �1 − 4Fm = m2,

�2 = 1 + �1 − 4Fm = 2 − m2,

=�2�
0

1 2d�

���1 − �2��1 − k2�2�
,

� =
�

�
, k2 =

�2

�2 =
m2

2 − m2 ,=
2�2

�2 − m2
K�k� ,
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K�k� = �
0

1 d�

��1 − �2��1 − k2�2�
= �

0

�/2 d�

�1 − k2 sin2 �
,

�A5�

where K�k� is the complete elliptic integral of the first kind
�29�. When l is large and m is close to unity, Eq. �A5� is
approximated as �30�

l �
2�2

�2 − m2

1

2
ln

16

1 − k2 , K�k� → ln
4

�1 − k2
, k → 1−,

��2 ln	1 − m2/�2 − m2�
16


, m � 1, �A6�

m =�2 −
1

1 − 8 exp�− l/�2�
� 1 − � , �A7�

� = 4 exp	− l
�2


, l � 1.

Thus m approaches to unity exponentially with l. This agrees
with the standing front solution in an infinite domain in Eq.
�2�.

Figure 9 plots ln�1−u�l /2�� against l obtained with com-
puter simulation using the initial condition

��x� = − 1 �− l/2 � x � 0�

= 1 �0 � x � l/2� . �A8�

The method of the simulation is the same as in Sec. II. The
solution satisfies the condition u�−x , t�=−u�x , t� for all t�0
and converges to the unstable stationary front solution. The
value of 1−u�l /2� decreases exponentially as the domain
length l increases. The value � in Eq. �A7� �solid line� agrees
with the simulation results �solid circles�.

By letting m=0 in Eq. �A5�, the smallest length lmin is
given by lmin=2K�0�=�. Then such a standing front solution
never exists in a domain of length less than �. Further, ac-
cording to the boundary conditions in Eqs. �1� and �A1�,
solutions connecting −m and m alternately can be con-
structed. Then there are stationary standing solutions up to
the number l / lmin in a domain of length l. These stationary
solutions are unstable and small fluctuations make the fronts

move so that they annihilate each other �15,16�.

2. Instantaneous speeds of fronts

Consider a general case in which m+�−m− in Eq. �A1�.
The speed of the stable traveling front in an infinite domain
in Eq. �2� is derived by letting z=x−ct in Eq. �1� �1–4�:

d2u/dz2 + c du/dz + f�u� = 0, u�x,t� = u�z�, z = x − ct .

�A9�

By multiplying du /dz and integrating from −� to �, Eq.
�A9� leads to

�
−�

�

��du/dz��d2u/dz2� + c�du/dz�2 + �du/dz�f�u��dz = 0,

c = − �
−�

�

�f�u�du/dz�dz��
−�

�

�du/dz�2dz

= − �
u�−��

u���

f�u�du��
−�

�

�du/dz�2dz . �A10�

For a bounded domain −l /2�x� l /2 in Eqs. �1� and �A1�,
this expression is still valid for front-type solutions by re-
placing the limits of the integrals with the values at the
boundaries as

c = − �
m−

m+

f�u�du��
−l/2

l/2

�du/dz�2dz , �A11�

m− = u�− l/2�, m+ = u�l/2� .

Although any traveling front solutions of nonzero speeds
never exist perpetually in a fixed bounded domain, they can
exist if the boundaries move at the same speed. Then the
value of c in Eq. �A11� can be regarded as an instantaneous
speed of a transient front connecting m− and m+.

Values of m− and m+ are necessary to obtain the speed c.
When m+ and −m− are the same, they depend on the domain
length l with Eqs. �A5�–�A7�. We here apply Eq. �A7� to the
case in which m+�−m−. Let l+ be the length of the right
domain in which u�0 and then l− l+ be the length of the left
domain for u�0 �u�0 for −l /2�x� l /2− l+ and u�0 for
l /2− l+�x� l /2�. The integral in the numerator in the right-
hand side of Eq. �A11� is approximated as

�
m−

m+

f�u�du = �− u4

4
+

u2

2
�

m−

m+

� �−
2 − �+

2, l � 1,

�− = m− + 1 = 4 exp��l − l+�/�2� , �A12�

�+ = 1 − m+ = 4 exp�− l+/�2� .

Note that 2l+ and 2�l− l+� are substituted for l in �� since l+
and l− l+ correspond to the half length l /2. The integral in the
denominator is approximated using the stable traveling front
solution in Eq. �2� as

-15

-10

-5

0

0 5 10 15 20 25
l 0

lo
g(
1
-
u
(l
/
2
))

simulation

δ in Eq. (A7)

FIG. 9. Boundary value of the stationary standing front vs do-
main length l. Plotted are ln�1−u�l /2�� of simulation results �solid
circles� and � in Eq. �A7� �solid line�.
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�
−l/2

l/2

�du/dz�2dz � �
−l/2

l/2 	d tanh�2−1/2z�
dz


2

dz

=
1
�2
�tanh	 z

�2

 −

1

3
tanh3	 z

�2

�

−l/2

l/2

� �8/9 ��0.943�, l � 1. �A13�

Hence, the movement of the front is expressed as

dl+/dt = − c � 16�exp�− 2�l − l+�/�2� − exp�− 2l+/�2��/�8/9

= k�exp�− 
�l − l+�� − exp�− 
l+�� ,

k = 24/�2 � 17.0, 
 = 2�2 � 2.83. �A14�

This derivation also relates the values of u at the boundaries
to the front speeds.
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